Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.743
Filtrar
1.
Sci Rep ; 14(1): 8310, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594467

RESUMO

Bacterial resistance surveillance is one of the main outputs of microbiological laboratories and its results are important part of antimicrobial stewardship (AMS). In this study, the susceptibility of specific bacteria to selected antimicrobial agents was tested. The susceptibility of 90 unique isolates of pathogens of critical priority obtained from clinically valid samples of ICU patients in 2017-2021 was tested. 50% of these fulfilled difficult-to-treat resistance (DTR) criteria and 50% were susceptible to all antibiotics included in the definition. 10 Enterobacterales strains met DTR criteria, and 2 (20%) were resistant to colistin (COL), 2 (20%) to cefiderocol (FCR), 7 (70%) to imipenem/cilastatin/relebactam (I/R), 3 (30%) to ceftazidime/avibactam (CAT) and 5 (50%) to fosfomycin (FOS). For Enterobacterales we also tested aztreonam/avibactam (AZA) for which there are no breakpoints yet. The highest MIC of AZA observed was 1 mg/l, MIC range in the susceptible cohort was 0.032-0.064 mg/l and in the DTR cohort (incl. class B beta-lactamase producers) it was 0.064-1 mg/l. Two (13.3%) isolates of Pseudomonas aeruginosa (15 DTR strains) were resistant to COL, 1 (6.7%) to FCR, 13 (86.7%) to I/R, 5 (33.3%) to CAT, and 5 (33.3%) to ceftolozane/tazobactam. All isolates of Acinetobacter baumannii with DTR were susceptible to COL and FCR, and at the same time resistant to I/R and ampicillin/sulbactam. New antimicrobial agents are not 100% effective against DTR. Therefore, it is necessary to perform susceptibility testing of these antibiotics, use the data for surveillance (including local surveillance) and conform to AMS standards.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Cefalosporinas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Aztreonam , 60607 , Bactérias Gram-Negativas , Colistina/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
2.
Mol Genet Genomics ; 299(1): 29, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472486

RESUMO

Pseudomonas aeruginosa (PA) is an important opportunistic pathogen that causes different infections on immunocompromised patients. Within PA accessory genome, differences in virulence, antibiotic resistance and biofilm formation have been described between strains, leading to the emergence of multidrug-resistant strains. The genome sequences of 17 strains isolated from patients with healthcare-associated infections in a Mexican hospital were genomically and phylogenetically analyzed and antibiotic resistance genes, virulence genes, and biofilm formation genes were detected. Fifteen of the 17 strains were resistant to at least two of the carbapenems meropenem, imipenem, and the monobactam aztreonam. The antibiotic resistance (mexA, mexB, and oprM) and the biofilm formation (pslA and pslD) genes were detected in all strains. Differences were found between strains in accessory genome size. The strains had different sequence types, and seven strains had sequence types associated with global high risk epidemic PA clones. All strains were represented in two groups among PA global strains. In the 17 strains, horizontally acquired resistance genes to aminoglycosides and beta-lactams were found, mainly, and between 230 and 240 genes that encode virulence factors. The strains under study were variable in terms of their accessory genome, antibiotic resistance, and virulence genes. With these characteristics, we provide information about the genomic diversity of clinically relevant PA strains.


Assuntos
Carbapenêmicos , Infecções por Pseudomonas , Humanos , Aztreonam , Pseudomonas aeruginosa/genética , Antibacterianos , Hospitais , Genômica , Atenção à Saúde , Testes de Sensibilidade Microbiana
3.
Antimicrob Agents Chemother ; 68(4): e0134623, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38426743

RESUMO

We evaluated the in vitro activity of meropenem-vaborbactam plus aztreonam (MEV-ATM) against 140 metallo-ß-lactamase (MBL)-producing Klebsiella pneumoniae isolates. Among them, 25 isolates (17.9%) displayed minimum inhibitory concentrations (MIC) ≥ 8 µg/mL, while 112 (80.0%) had MIC ≤ 2 µg/mL. Genomic analysis and subsequent gene cloning experiments revealed OmpK36 134-135GD-insertion and increased carbapenemase gene (blaNDM-1 and blaOXA-48-like) copy numbers are the main factors responsible for MEV-ATM non-susceptibility. Notably, MEV-ATM is actively against aztreonam-avibactam-resistant mutants due to CMY-16 mutations.


Assuntos
Antibacterianos , Aztreonam , Ácidos Borônicos , Meropeném/farmacologia , Aztreonam/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos/farmacologia
4.
Ann Clin Microbiol Antimicrob ; 23(1): 14, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350903

RESUMO

PURPOSE: This study aimed to characterise the whole-genome structure of two clinical Klebsiella pneumoniae strains co-harbouring mcr-8.1 and tmexCD1-toprJ1, both resistant to colistin and tigecycline. METHODS: K. pneumoniae strains TGC-02 (ST656) and TGC-05 (ST273) were isolated from urine samples of different patients hospitalised at separate times in 2021. Characterisation involved antimicrobial susceptibility testing (AST), conjugation assays, whole-genome sequencing (WGS), and bioinformatics analysis. Comparative genomic analysis was conducted on mcr-8.1-carrying and tmexCD1-toprJ1-carrying plasmids. RESULTS: Both K. pneumoniae isolates displayed a multidrug-resistant phenotype, exhibiting resistance or reduced susceptibility to ampicillin, ampicillin/sulbactam, cefazolin, aztreonam, amikacin, gentamicin, tobramycin, ciprofloxacin, levofloxacin, nitrofurantoin, trimethoprim/sulfamethoxazole, apramycin, tigecycline and colistin. WGS analysis revealed that clinical strain TGC-02 carried the TmexCD1-toprJ1 gene on a 200-Kb IncFII/IncFIB-type plasmid, while mcr-8 was situated on a 146-Kb IncFII-type plasmid. In clinical strain TGC-05, TmexCD1-toprJ1 was found on a 300-Kb IncFIB/IncHI1B/IncR-type plasmid, and mcr-8 was identified on a 137-Kb IncFII/IncFIA-type plasmid. Conjugation experiments assessed the transferability of these plasmids. While transconjugants were not obtained for TGC-05 despite multiple screening with tigecycline or colistin, pTGC-02-tmex and pTGC-02-mcr8 from clinical K. pneumoniae TGC-02 demonstrated self-transferability through conjugation. Notably, the rearrangement of pTGC-02-tmex and pTGC-02-mcr8 via IS26-based homologous recombination was observed. Moreover, the conjugative and fusion plasmids of the transconjugant co-harboured the tmexCD1-toprJ1 gene cluster and mcr-8.1, potentially resulting from IS26-based homologous recombination. CONCLUSION: The emergence of colistin- and tigecycline-resistant K. pneumoniae strains is concerning, and effective surveillance measures should be implemented to prevent further dissemination.


Assuntos
Amicacina , Colistina , Humanos , Colistina/farmacologia , Tigeciclina , Ampicilina , Aztreonam , Klebsiella pneumoniae/genética , Plasmídeos/genética , Antibacterianos/farmacologia
5.
Sci Rep ; 14(1): 3148, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326428

RESUMO

Antimicrobial resistance has emerged as one of the leading public health threats of the twenty-first century. Gram-negative pathogens have been a major contributor to the declining efficacy of antibiotics through both acquired resistance and tolerance. In this study, a pan-drug resistant (PDR), NDM-1 and CTX-M-15 co-producing isolate of K. pneumoniae, CDC Nevada, (Kp Nevada) was exposed to the clinical combination of aztreonam + ceftazidime/avibactam (ATM/CAZ/AVI) to overcome metallo-ß-lactamases. Unexpectedly, the ß-lactam combination resulted in long filamentous cell formation induced by PBP3 inhibition over 168 h in the hollow fiber infection model experiments with eventual reversion of the total population upon drug removal. However, the addition of imipenem to the two drug ß-lactam combination was highly synergistic with suppression of all drug resistant subpopulations over 5 days. Scanning electron microscopy and fluorescence microscopy for all imipenem combinations in time kill studies suggested a role for imipenem in suppression of long filamentous persisters, via the formation of metabolically active spheroplasts. To complement the imaging studies, salient transcriptomic changes were quantified using RT-PCR and novel cassette assay evaluated ß-lactam permeability. This showed significant upregulation of both spheroplast protein Y (SPY), a periplasmic chaperone protein that has been shown to be related to spheroplast formation, and penicillin binding proteins (PBP1, PBP2, PBP3) for all combinations involving imipenem. However, with aztreonam alone, pbp1, pbp3 and spy remained unchanged while pbp2 levels were downregulated by > 25%. Imipenem displayed 207-fold higher permeability as compared with aztreonam (mean permeability coefficient of 17,200 nm/s). Although the clinical combination of aztreonam/avibactam and ceftazidime has been proposed as an important treatment of MBL Gram-negatives, we report the first occurrence of long filamentous persister formation. To our knowledge, this is the first study that defines novel ß-lactam combinations involving imipenem via maximal suppression of filamentous persisters to combat PDR CDC Nevada K. pneumoniae.


Assuntos
Compostos Azabicíclicos , Ceftazidima , Klebsiella pneumoniae , Ceftazidima/farmacologia , Klebsiella pneumoniae/metabolismo , Aztreonam/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , beta-Lactamases/metabolismo , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
6.
Antimicrob Agents Chemother ; 68(4): e0154823, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415988

RESUMO

The impact of penicillin-binding protein 3 (PBP3) modifications that may be identified in Escherichia coli was evaluated with respect to susceptibility to ß-lactam/ß-lactamase inhibitor combinations including ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, aztreonam-avibactam, cefepime-taniborbactam, and to cefiderocol. A large series of E. coli recombinant strains producing broad-spectrum ß-lactamases was evaluated. While imipenem-relebactam showed a similar activity regardless of the PBP3 background, susceptibility to other molecules tested was affected at various levels. This was particularly the case for ceftazidime-avibactam, aztreonam-avibactam, and cefepime-taniborbactam.


Assuntos
Aztreonam , Ácidos Borínicos , Ácidos Borônicos , Ácidos Carboxílicos , 60607 , Ceftazidima , Aztreonam/farmacologia , Meropeném/farmacologia , Cefepima/farmacologia , Proteínas de Ligação às Penicilinas , Escherichia coli , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , Combinação de Medicamentos , Imipenem/farmacologia , Imipenem/química , Testes de Sensibilidade Microbiana
7.
Int J Antimicrob Agents ; 63(4): 107113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354826

RESUMO

BACKGROUND: Aztreonam-avibactam is under clinical development for treatment of infections caused by carbapenem-resistant Enterobacterales (CRE), especially those resistant to recently approved ß-lactamase inhibitor combinations (BLICs). OBJECTIVES: To evaluate a large collection of CRE isolates, including those non-susceptible to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam. METHODS: Overall, 24 580 Enterobacterales isolates were consecutively collected (1/patient) in 2020-2022 from 64 medical centres located in Western Europe (W-EU), Eastern Europe (E-EU), Latin America (LATAM), and the Asia-Pacific region (APAC). Of those, 1016 (4.1%) were CRE. Isolates were susceptibility tested by broth microdilution. CRE isolates were screened for carbapenemase genes by whole genome sequencing. RESULTS: Aztreonam-avibactam inhibited 99.6% of CREs at ≤8 mg/L. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam were active against 64.6%, 57.4%, and 50.7% of CRE isolates, respectively; most of the non-susceptible isolates carried metallo-beta-lactamases. Aztreonam-avibactam was active against ≥98.9% of isolates non-susceptible to these BLICs. The activity of these BLICs varied by region, with highest susceptibility rates observed in W-EU (76.9% for ceftazidime-avibactam, 72.5% for meropenem-vaborbactam, 63.8% for imipenem-relebactam) and the lowest susceptibility rates identified in the APAC region (39.9% for ceftazidime-avibactam, 37.8% for meropenem-vaborbactam, and 27.5% for imipenem-relebactam). The most common carbapenemase types overall were KPC (44.6% of CREs), NDM (29.9%), and OXA-48-like (16.0%). KPC predominated in LATAM (64.1% of CREs in the region) and W-EU (61.1%). MBL occurrence was highest in APAC (59.5% of CREs in the region), followed by LATAM (34.0%), E-EU (28.9%), and W-EU (23.6%). CONCLUSIONS: Aztreonam-avibactam demonstrated potent activity against CRE isolates resistant to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam independent of the carbapenemase produced.


Assuntos
Aztreonam , Ácidos Borônicos , Inibidores de beta-Lactamases , Humanos , Aztreonam/farmacologia , Meropeném , Inibidores de beta-Lactamases/farmacologia , América Latina , Antibacterianos/farmacologia , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , Europa (Continente)/epidemiologia , Combinação de Medicamentos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana
8.
Eur J Clin Pharmacol ; 80(4): 529-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252170

RESUMO

PURPOSE: A series of iterative population pharmacokinetic (PK) modeling and probability of target attainment (PTA) analyses based on emerging data supported dose selection for aztreonam-avibactam, an investigational combination antibiotic for serious Gram-negative bacterial infections. METHODS: Two iterations of PK models built from avibactam data in infected patients and aztreonam data in healthy subjects with "patient-like" assumptions were used in joint PTA analyses (primary target: aztreonam 60% fT > 8 mg/L, avibactam 50% fT > 2.5 mg/L) exploring patient variability, infusion durations, and adjustments for moderate (estimated creatinine clearance [CrCL] > 30 to ≤ 50 mL/min) and severe renal impairment (> 15 to ≤ 30 mL/min). Achievement of > 90% joint PTA and the impact of differential renal clearance were considerations in dose selection. RESULTS: Iteration 1 simulations for Phase I/IIa dose selection/modification demonstrated that 3-h and continuous infusions provide comparable PTA; avibactam dose drives joint PTA within clinically relevant exposure targets; and loading doses support more rapid joint target attainment. An aztreonam/avibactam 500/137 mg 30-min loading dose and 1500/410 mg 3-h maintenance infusions q6h were selected for further evaluation. Iteration 2 simulations using expanded PK models supported an alteration to the regimen (500/167 mg loading; 1500/500 mg q6h maintenance 3-h infusions for CrCL > 50 mL/min) and selection of doses for renal impairment for Phase IIa/III clinical studies. CONCLUSION: A loading dose plus 3-h maintenance infusions of aztreonam-avibactam in a 3:1 fixed ratio q6h optimizes joint PTA. These analyses supported dose selection for the aztreonam-avibactam Phase III clinical program. CLINICAL TRIAL REGISTRATION: NCT01689207; NCT02655419; NCT03329092; NCT03580044.


Assuntos
Antibacterianos , Aztreonam , Humanos , Aztreonam/farmacocinética , Antibacterianos/farmacocinética , Compostos Azabicíclicos , Testes de Sensibilidade Microbiana , Combinação de Medicamentos
9.
Indian J Med Microbiol ; 47: 100530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246242

RESUMO

PURPOSE: The choice of antibiotics for treatment of Carbapenem-Resistant Enterobacterales (CRE) is increasing becoming limited due to co-expression of Metallo-beta-lactamases (MBL) along with other carbapenemases in these isolates. The study aimed to investigate the occurrence of CRE and to determine the in-vitro synergy and clinical outcomes of Ceftazidime-Avibactam and Aztreonam combination in CRE infections in adult Intensive Care Units (ICUs). METHODS: 79 CRE isolates recovered from adult ICUs during January to March 2023 were tested by O.K.N.V.I. RESIST-5, a lateral flow multiplex assay for rapid detection of OXA-48-like, NDM, IMP, VIM, and KPC carbapenemases. Ceftazidime-Avibactam MIC was determined by microbroth dilution method and in vitro synergy between Ceftazidime-Avibactam and Aztreonam was assessed by Modified E-test/disc diffusion method for these isolates. RESULTS: The study revealed 7.5 % occurrence of CRE in our hospital, with high occurrence of NDM (n = 42, 53.1 %) and OXA-48-like (n = 63, 79.7 %) carbapenemase. Production of more than one type of carbapenemases was found in 44 isolates. A total of 57 isolates (72 %) had Ceftazidime-Avibactam resistance and 44 of them displayed Ceftazidime-Avibactam and Aztreonam in-vitro synergy. Successful clinical outcome was observed in two patients who received Ceftazidime-Avibactam and Aztreonam combination therapy for 7 days or more. CONCLUSIONS: Despite the preponderance of Ceftazidime-Avibactam resistant CRE expressing NDM and OXA-48-like carbapenemase in our hospital, 77.2 % of them displayed in-vitro synergy of Ceftazidime-Avibactam with Aztreonam. It emphasizes the potential therapeutic utility of this combination in CRE strains showing coproduction of MBL and serine carbapenemases. Greater therapeutic potential of Ceftazidime-Avibactam and Aztreonam combination was observed with extended duration of therapy. However, further clinical evidence is needed to establish the efficacy of this combination and consider other factors that influence treatment outcomes.


Assuntos
Compostos Azabicíclicos , Aztreonam , Ceftazidima , Adulto , Humanos , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação de Medicamentos , beta-Lactamases , Carbapenêmicos , Testes de Sensibilidade Microbiana
10.
Eur J Clin Microbiol Infect Dis ; 43(4): 777-784, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277033

RESUMO

The combination of ceftazidime-avibactam (CAZ-AVI) and aztreonam (ATM) is used to treat MBL-producing Enterobacterales-related infections. The new combination aztreonam-avibactam (AZA) is currently in development. We compared results obtained with the new MIC test strip (MTS) AZA (Liofilchem) with broth microdilution method (BMD) on 41 MBL-producing Enterobacterales from 41 clinical samples. The MTS AZA was also compared to combination testing method using CAZ-AVI and ATM strips. Compared to BMD, categorical agreement (CA) was 100%. Compared with combination testing method, CA was 97.6%. The MTS AZA can be used to determine MICs levels of AZA or CAZ-AVI/ATM combinations.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Humanos , Aztreonam/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/uso terapêutico , beta-Lactamases , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
11.
J Glob Antimicrob Resist ; 36: 244-251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272211

RESUMO

OBJECTIVES: The rapid spread of the New Delhi Metal-ß-lactamase-1 (NDM-1) gene in Klebsiella pneumoniae poses a substantial challenge to pediatric therapeutic care. Here, we aimed to characterise the IncX3-type plasmid carrying the blaNDM-1 gene in ST76 carbapenem resistance K. pneumoniae (CRKP) strains and assess the in vitro and in vivo bactericidal efficacy of Aztreonam (ATM) combined with Avibactam (AVI) (ATM+AVI) against CRKP. METHODS: The broth microdilution method and PCR were used to detect antimicrobial susceptibility and antibiotic resistance genes. Genetic relatedness was determined using Pulsed-Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST). The plasmid conjugation assay was used to verify the transmissibility of drug-resistant plasmids. Whole-Genome Sequencing (WGS) was employed to elucidate the genomic attributes of the genes. The Fractional Inhibitory Concentration (FIC) was calculated based on the checkerboard titration assay to determine the antimicrobial effect of ATM+AVI. The time-kill curve assay and a mouse anti-infection model were used to investigate the in vitro and in vivo bactericidal efficiency of ATM+AVI. RESULTS: Seven blaNDM-1-producing strains were found to be highly resistant to carbapenems, and they all belonged to the same sequence type (ST76) and were classified into the same PFGE clusters with an 89.1% similarity. The conjugation assay showed that the blaNDM-1-carrying plasmid was successfully transferred to Escherichia coli 600, resulting in transconjugants with carbapenem antibiotic resistance. A 54-kb IncX3 plasmid (pNDM-XZA88) carried the blaNDM-1 gene located on a Tn125 transposon-like element structure, demonstrating the transferability of resistance genes. Genome comparative analysis revealed that pNDM-XZA88 was highly similar to pCQ17 × 3 and pRor-30818cz and had relatively conserved backbones and variable accessory regions compared to the other four plasmids (pC39-334 kb, pNDM-1-DY1928, pNDM-K725, and pNDM-Z244). The checkerboard titration and time-kill curve assays revealed that the ATM+AVI combination therapy exerted significant bactericidal efficacy against the blaNDM-1-producing strains in vitro. The ATM+AVI combination also significantly reduced the bacterial burden in a mouse infection model constructed using the blaNDM-1-producing K. pneumoniae. CONCLUSION: This study demonstrated the clone dissemination of blaNDM-1-harboring IncX3 plasmids among the ST76 K. pneumoniae isolated from pediatric patients. Therefore, more attention should be paid to preventing this high-risk clone from harming pediatric patients. Moreover, we deduced that the ATM+AVI combination therapy is an effective strategy for treating blaNDM-1-producing K. pneumoniae.


Assuntos
Compostos Azabicíclicos , Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , Animais , Camundongos , Humanos , Criança , Aztreonam/farmacologia , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli/genética , Carbapenêmicos/farmacologia
12.
Bioorg Med Chem Lett ; 99: 129615, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199331

RESUMO

Monocyclic ß-lactams are stable to a number of ß-lactamases and are the focus of researchers for the development of antibacterial drugs, particularly against Enterobacterales. We recently synthesized and reported the bactericidal activity of diverse series of aztreonam appended with amidine moieties as siderophores. One of the derivatives exhibiting the highest MIC value in vitro was selected for further preclinical studies. The compound DPI-2016 was reassessed for its synthetic routes and methods that were improved to find the maximum final yields aimed at large-scale synthesis. In addition, the results of the pharmacological studies were determined with reference to aztreonam. It has been found that the compound DPI-2016 showed comparable or slightly improved ADMET as well as pharmacokinetic parameters to aztreonam. It is estimated that the compound could be a potential lead for further clinical evaluation.


Assuntos
Aztreonam , Monobactamas , Monobactamas/farmacologia , Aztreonam/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases , Testes de Sensibilidade Microbiana
13.
Int J Antimicrob Agents ; 63(3): 107081, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176458

RESUMO

Enterobacterales with carbapenemase-independent resistance to carbapenems are sometimes selected during therapy and, on rare occasions, cause outbreaks. Most have extended-spectrum or AmpC ß-lactamases, together with changes to permeability or penicillin-binding proteins (PBPs). Newer ß-lactam-ß-lactamase inhibitor combinations may present useful options for infections due to these organisms. Accordingly, Clinical and Laboratory Standards Institute/European Committee on Antimicrobial Susceptibility Testing broth-microdilution was used to measure the minimum inhibitory concentrations (MICs) of ceftazidime/avibactam and aztreonam/avibactam for 51 carbapenemase-negative Enterobacterales with resistance or reduced susceptibility to carbapenems: genomic sequencing of the least-susceptible organisms was also undertaken. MICs of the two avibactam combinations cross-correlated closely, but with fewer MICs (2/51 vs. 10/51) exceeding 8+4 mg/L in the case of ceftazidime/avibactam. Raised MICs for Escherichia coli were associated with PBP3 inserts together with CMY-42 ß-lactamase; correlates among Enterobacter cloacae complex isolates remain elusive, with AmpC and PBP3 sequences found to be species specific. In the case of Klebsiella spp., no MICs exceeding 2 mg/L were seen for either combination. It appears that these avibactam combinations have potential against Enterobacterales with carbapenemase-independent carbapenem resistance or reduced susceptibility, with ceftazidime/avibactam being more reliably active than aztreonam/avibactam.


Assuntos
Compostos Azabicíclicos , Aztreonam , Proteínas de Bactérias , Ceftazidima , Aztreonam/farmacologia , Ceftazidima/farmacologia , beta-Lactamases/genética , Carbapenêmicos , Escherichia coli/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-38199247

RESUMO

Changes in expression levels of drug efflux pump genes, mexB and mexY, and porin gene oprD in Pseudomonas aeruginosa were investigated in this study. Fifty-five multidrug-resistant P. aeruginosa (MDRP) strains were compared with 26 drug-sensitive strains and 21 strains resistant to a single antibiotic. The effect of the efflux inhibitor Phe-Arg-ß-naphthylamide on drug susceptibility was determined, and gene expression was quantified using real-time quantitative real-time reverse transcription polymerase chain reaction. In addition, the levels of metallo-ß-lactamase (MBL) and 6'-N-aminoglycoside acetyltransferase [AAC(6')-Iae] were investigated. Efflux pump inhibitor treatment increased the sensitivity to ciprofloxacin, aztreonam, and imipenem in 71%, 73%, and 29% of MDRPs, respectively. MBL and AAC(6')-Iae were detected in 38 (69%) and 34 (62%) MDRP strains, respectively. Meanwhile, 76% of MDRP strains exhibited more than 8-fold higher mexY expression than the reference strain PAO1. Furthermore, 69% of MDRP strains expressed oprD at levels less than 0.01-fold of those in PAO1. These findings indicated that efflux pump inhibitors in combination with ciprofloxacin or aztreonam might aid in treating MDRP infections.


Assuntos
Aztreonam , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Aztreonam/farmacologia , Ciprofloxacina/farmacologia , Imipenem , Transporte Biológico
15.
Expert Rev Anti Infect Ther ; 22(4): 203-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258529

RESUMO

INTRODUCTION: Carbapenem-resistant Enterobacterales (CRE) due to Metallo-ß-lactamase (MBL) production are treated with either polymyxins or the novel combination of ceftazidime-avibactam and aztreonam (AA). This study aims to evaluate the 30-day mortality of AA in patients with BSI caused by MBL-CRE infections. METHODOLOGY: In this systematic review and meta-analysis, all articles up to June 2023 were screened using search terms like 'CRE', 'MBL', 'AA' and 'polymyxins'. The risk ratio for AA vs polymyxins was pooled using a random-effect model, and the results were represented by a point estimate with a 95% confidence interval. RESULTS: After removing the duplicates, the titles and abstracts of 455 articles were screened, followed by a full-text screening of 50 articles. A total of 24 articles were included for systematic review, and four comparative studies were included in the meta-analysis. All four studies had a moderate or serious risk of bias. The pooled risk ratio for 30-day mortality for AA vs. polymyxins was 0.51 (95%CI: 0.34-0.76), p < 0.001. There was no significant heterogeneity. CONCLUSION: The meta-analysis from studies with a high risk of bias shows that AA is associated with lesser 30-day mortality when compared to polymyxins in patients with MBL-producing CRE BSI. Registration with PROSPERO- CRD42023433608.


Assuntos
Aztreonam , Sepse , Humanos , Aztreonam/farmacologia , Combinação de Medicamentos , Polimixinas/farmacologia , beta-Lactamases , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos , Ceftazidima/farmacologia
16.
Expert Rev Anti Infect Ther ; 22(4): 189-201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38275276

RESUMO

INTRODUCTION: Metallo-beta-lactamases (MBLs) are responsible for resistance to almost all beta-lactam antibiotics. Found predominantly in Gram-negative bacteria, they severely limit treatment options. Understanding the epidemiology, risk factors, treatment, and prevention of infections caused by MBL-producing organisms is essential to reduce their burden. AREAS COVERED: The origins and structure of MBLs are discussed. We describe the mechanisms of action that differentiate MBLs from other beta-lactamases. We discuss the global epidemiology of MBL-producing organisms and their impact on patients' outcomes. By exposing the mechanisms of transmission of MBLs among bacterial populations, we emphasize the importance of infection prevention and control. EXPERT OPINION: MBLs are spreading globally and challenging the majority of available antibacterial agents. Genotypic tests play an important role in the identification of MBL production. Phenotypic tests are less specific but may be used in low-resource settings, where MBLs are more predominant. Infection prevention and control are critical to reduce the spread of organisms producing MBL in healthcare systems. New combinations such as avibactam-aztreonam and new agents such as cefiderocol have shown promising results for the treatment of infections caused by MBL-producing organisms. New antibiotic and non-antibiotic agents are being developed and may improve the management of infections caused by MBL-producing organisms.


Assuntos
Antibacterianos , beta-Lactamases , Humanos , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aztreonam , Bactérias Gram-Negativas , Bactérias , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia
17.
Eur J Clin Microbiol Infect Dis ; 43(2): 339-354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095831

RESUMO

PURPOSE: To evaluate the different present and future therapeutic ß-lactam/ß-lactamase inhibitor (BL/BLI) alternatives, namely aztreonam-avibactam, imipenem-relebactam, meropenem-vaborbactam, cefepime-zidebactam, cefepime-taniborbactam, meropenem-nacubactam, and sulbactam-durlobactam against clinical isolates showing reduced susceptibility or resistance to cefiderocol in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa. METHODS: MIC values of aztreonam, aztreonam-avibactam, cefepime, cefepime-taniborbactam, cefepime-zidebactam, imipenem, imipenem-relebactam, meropenem, meropenem-vaborbactam, meropenem-nacubactam, sulbactam-durlobactam, and cefiderocol combined with a BLI were determined for 67, 9, and 11 clinical Enterobacterales, P. aeruginosa or A. baumannii isolates, respectively, showing MIC values of cefiderocol being ≥1 mg/L. If unavailable, the respective ß-lactam breakpoints according to EUCAST were used for BL/BLI combinations. RESULTS: For Enterobacterales, the susceptibility rates for aztreonam, cefepime, imipenem, and meropenem were 7.5%, 0%, 10.4%, and 10.4%, respectively, while they were much higher for cefepime-zidebactam (91%), cefiderocol-zidebactam (91%), meropenem-nacubactam (71.6%), cefiderocol-nacubactam (74.6%), and cefiderocol-taniborbactam (76.1%), as expected. For P. aeruginosa isolates, the higher susceptibility rates were observed for imipenem-relebactam, cefiderocol-zidebactam, and meropenem-vaborbactam (56% for all combinations). For A. baumannii isolates, lower susceptibility rates were observed with commercially or under development BL/BLI combos; however, a high susceptibility rate (70%) was found for sulbactam-durlobactam and when cefiderocol was associated to some BLIs. CONCLUSIONS: Zidebactam- and nacubactam-containing combinations showed a significant in vitro activity against multidrug-resistant Enterobacterales clinical isolates with reduced susceptibility to cefiderocol. On the other hand, imipenem-relebactam and meropenem-vaborbactam showed the highest susceptibility rates against P. aeruginosa isolates. Finally, sulbactam-durlobactam and cefiderocol combined with a BLI were the only effective options against A. baumannii tested isolates.


Assuntos
Compostos Azabicíclicos , Aztreonam , Ácidos Borínicos , Ácidos Borônicos , Ácidos Carboxílicos , Ciclo-Octanos , Lactamas , Piperidinas , Humanos , Meropeném/farmacologia , Cefepima , Aztreonam/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Imipenem/farmacologia , Inibidores de beta-Lactamases/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases
18.
Chemosphere ; 349: 140884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065262

RESUMO

Recently, beta-lactam antibiotics have gained attention as significant contributors to public health and environmental issues due to their potential toxicity. Our study employed machine learning to develop a model for assessing the aquatic toxicity of beta-lactam antibiotics on zebrafish. Notably, aztreonam (AZT), a synthetic monobactam and a subclass of beta-lactam antibiotics, demonstrated developmental effects in zebrafish embryos comparable to cephalosporins, indicating a potential for toxicity. Using a systems toxicology-based approach, we identified apoptosis and metabolic disorders as the primary pathways affected by AZT and its impurity F exposure. During the administration of monobactams, we noted that ctsbb, nos2a, and dgat2, genes associated with apoptosis and the metabolic pathway, exhibited significant differential expression. Molecular docking studies were conducted to ascertain the binding affinity between monobactam compounds and their potential targets-Ctsbb, Nos2a, and Dgat2. Furthermore, our research revealed that monobactams influence pre-mRNA alternative splicing, resulting in disruptions in the expression of genes involved in hair cells, brain, spinal cord, and fin regeneration (e.g., krt4, krt5, krt17, cyt1). Notably, we observed a correlation between the levels of rpl3 and rps7 genes, both important ribosomal proteins, and the detected alternative splicing events. Overall, this study enhances our understanding of the toxicity of beta-lactam antibiotics in zebrafish by demonstrating the developmental effects of monobactams and uncovering the underlying mechanisms at the molecular level. It also identifies potential targets for further investigation into the mechanisms of toxicity and provides valuable insights for early assessment of biological toxicity associated with antibiotic pollutants.


Assuntos
Peixe-Zebra , Animais , Peixe-Zebra/genética , Simulação de Acoplamento Molecular , Antibacterianos/química , Monobactamas , Aztreonam
19.
J Glob Antimicrob Resist ; 36: 59-61, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128725

RESUMO

OBJECTIVES: In-depth phenotypic and genomic analyses on a carbapenem-resistant Escherichia coli isolate, recovered from the faeces of a farm dog in Lebanon, focusing on its antimicrobial resistance (AMR) patterns and the underlying resistome. METHODS: E. coli strain EC-106 was identified using MALDI-TOF-MS. Analyses using Carba NP, immunochromatographic assay NG Carba5, and other antimicrobial susceptibility testing were performed. Whole-genome sequencing (WGS) using the Illumina technology and different software available at the Center of Genomic Epidemiology wwere used to predict the resistome, sequence type (ST), plasmid types, and virulence genes. RESULTS: Susceptibility testing revealed that E. coli EC-106 was multi-drug resistant, including against newer antimicrobials such as imipenem-relebactam (MIC = 16 µg/mL), meropenem-vaborbactam (MIC = 16 µg/mL), and ceftazidime-avibactam (MIC > 32 µg/mL), but remained susceptible to aztreonam (MIC = 0.12 µg/mL), aztreonam-avibactam (MIC = 0.06 µg/mL), and cefiderocol (MIC = 0.5 µg/mL). WGS analyses showed that E. coli EC-106 carried 13 acquired resistance genes associated with resistance to ß-lactams (blaNDM-5 and blaTEM-1B), aminoglycosides (aac(3)-IId, aph(3')-Ia, aadA1, and aadA2), tetracyclines (tetA), amphenicols (partial catA1), macrolides (mphA), sulphonamides (sul1 and sul3), trimethoprim (dfrA12), and quaternary ammonium compounds (partial qacE). The blaNDM-5 was located on an IncX3 plasmid. The isolate was predicted to be a human pathogen (92.9%) and belonged to ST1011. CONCLUSION: To our knowledge, this is the first report of the detection of an IncX3 plasmid carrying the blaNDM-5 gene in animals in Lebanon, highlighting the severe AMR challenges in the country. Taken together, our current and previous findings suggest that blaNDM-5 might be spreading in different hosts and genetic backgrounds across clinical and non-clinical settings.


Assuntos
Proteínas de Bactérias , Infecções por Escherichia coli , Escherichia coli , beta-Lactamases , Cães , Humanos , Animais , Aztreonam/farmacologia , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Antibacterianos/farmacologia
20.
J Glob Antimicrob Resist ; 36: 123-131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154750

RESUMO

OBJECTIVES: Metallo-ß-lactamase (MBL)-producing Enterobacterales are a major challenge worldwide due to limited treatment options. Aztreonam-avibactam (ATM-AVI), which is under clinical development, has shown activity against MBL-positive isolates. This study evaluated the prevalence of MBL producers and the nature of enzymes among a global collection of clinical isolates of Enterobacterales from the Antimicrobial Testing Leadership and Surveillance program (ATLAS) surveillance program (2016-2020), and the antimicrobial activity of ATM-AVI and comparators against this collection. METHODS: Non-duplicate clinical isolates of Enterobacterales (N = 106 686) collected across 63 countries were analysed. Antimicrobial susceptibility was performed using broth microdilution. Minimum inhibitory concentrations (MICs) were interpreted using Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing breakpoints. Provisional pharmacokinetic/pharmacodynamic breakpoint of ≤8 mg/L was considered for ATM-AVI. ß-lactamase genes were characterized by polymerase chain reaction and sequencing. The Cochran Armitage Trend test was used to determine significant trends in percentage of isolates over time. RESULTS: Overall, MBL-positive isolates were 1.6% of total Enterobacterales isolates globally, with a significant increasing trend observed over time, globally and across regions (P < 0.05). New Delhi MBL (NDM) was the most common MBL (83.3%). ATM-AVI demonstrated potent activity against MBL-positive isolates (MIC ≤8 mg/L: 99.4% isolates inhibited; MIC90, 1 mg/L). Consistent activity was also noted across different regions. Potent activity was demonstrated against different NDM variants and MBL-positive isolates co-carrying other carbapenemases (98.1% and 99.7% isolates inhibited at ≤8 mg/L, respectively). About 0.6% MBL-positive isolates (10/1707) had MICs >8 mg/L for ATM-AVI. CONCLUSION: ATM-AVI demonstrated potent activity against MBL-positive isolates, including NDM variants and MBL-positive isolates co-carrying other carbapenemases, and may represent a good option for treating infections caused by MBL-positive Enterobacterales.


Assuntos
Anti-Infecciosos , Ascomicetos , Gammaproteobacteria , Aztreonam/farmacologia , beta-Lactamases/genética , Compostos Azabicíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...